
A Computer Program Automatically Acquiring Some
Skills for a Simple Design Problem

Gourabmoy Nath

One of the principal dimensions of expertise of a skilled designer is what has been
called procedural know-how; experiential knowledge that enables goal-oriented
problem solving. In this paper, we present an experiment in machine skill
acquisition in a very small and narrow, but yet a demonstrative well-defined
design domain through a program that acquires procedural know-how
automatically by learning from its experience of practice (computational run)
which it applies to produce good design solutions for a slightly different problem.
The primitive learning and problem solving methods are based on an architecture
for general intelligence called SOAR. The learned knowledge is analysed in terms
of its contents, bounds of potential success and failure and why and how can it
can be designated as a skill. What is surprising is that, a subset of the acquired
know-how contains a very common human strategy used to generate the best
solutions to this design problem.

he goal of this paper is to present results of some experiments on
machine skill acquisition in designing in a spirit similar to that of
human skill acquisition, using a small but demonstrative well-defined

design problem instance. This “spirit”, the basis of the experimentation, is
as follows. A “novice program” starts with some theoretical knowledge of
generating and evaluating designs. After one instance of problem solving,
the program learns from its own experience of a computational run and
converts the theoretical knowledge of best/good designs into practical
knowledge. This practical knowledge is a re-representation of the
theoretical knowledge in terms of know-how or what to do in order to get
to good solutions. Whether the learned knowledge is of any use or not is
evaluated by running the program armed with the learned knowledge on a
similar design problem. The learned knowledge can be categorized as a
skill because it enables the program to direct its future searches to fruitful
directions, by following a strategy.

Design expertise is tacit knowledge that is probably more(Akin, 1996)
about procedural know-how (Akin, 1974; 1990a) than it is about
declarative representations or know-that (Anderson, 1983). It is widely
believed that knowledge of the former type can only be acquired only
through experience that transforms declarative know-that into procedural
know-how. Many researchers have referred to such procedural know-how
using varied terminologies in computational, cognitive or mixed contexts,

T

Gourabmoy Nath

e.g. Smithers.et.al.(1990) calls it “intelligent control”; Coyne (1988)
refers to it as meta-knowledge or “knowledge about design actions” that
enable “experienced designers to engage in restricted search behaviours”;
Oki and Lloyd Smith refers it as “conditions under which rules are useful
or useless”, Muller and Pasman (1996) address it as assembling of
situation-specific schema from experience, Vancza (1991) as positive and
negative control heuristics and Mitchell et.al.(1976) states it as practical
design knowledge that “consists of knowing what design move to make in
response to a given context”. The explanation of expertise as
transformation of declarative to procedural knowledge is in abundance in
the information processing approach to psychology e.g. Langley (1987),
state that experts possess a set of “heuristically useful conditions”. Anzai
(1987) demonstrate through cognitive experiments that experts acquire
strategies that can choose moves by solving similar problems repeatedly.
Kolodner (1983) describe the transformation of declarative to procedural
knowledge as the key factor that distinguishes experts from novices.

The plan of this paper is as follows. First the design problem is
described, and then the design process used to solve it is elaborated.
Then the mechanism of learning is stated, although the focus of this paper
is not on the learning algorithm. The experiment for skill acquisition is
described, followed by its results and how a slightly different problem is
solved using the skill acquired. The bounds of potential success of the
learned knowledge are assessed, as are the limitations. Finally, the
nature of the skill is interpreted using some theory.

1. The Design Problem

The problem is a relatively simple one; one of designing alternative
shapes of rooms that have minimal perimeter for a given area. This
problem is formulated as follows: There is a rectangular grid composed of
a finite number of squares, enough to accommodate the area of the room.
A room is constructed incrementally by allocating squares from the grid.
When a grid square is allocated to a room the allocated grid square
becomes a cell. A room design is an agglomeration of cells, a cell
complex, with every cell having at least one of its adjacent grid squares
allocated as another cell. Adjacencies of a cell occupying a given grid
square are equivalent to adjacency of that grid square. Adjacency of a
grid-square is defined as a condition where there is some grid-square to
the north, east, south or west of the grid-square under consideration.
Thus if grid-square (x,y)=(2,2) (x=horizontal grid row starting from
0(bottom-left corner), y= vertical grid column starting from 0) is under
consideration, then the grid squares (2,3), (2,1), (3,2), (1,2) are adjacent
to (2.2) in the north, south, east and west directions respectively. Grid-
squares along a diagonal ((3,3), (1,1), (1,3) and (3,1)) that share one
common point are not considered adjacent. The area of the room is the
number of cells in the cell complex. So the grid is assumed to be large
enough to accommodate the area of the room. The space within a cell
complex is the space within the room. The external boundary of the cell
complex is the shape of the room. The perimeter of the room is the
number of unit external edges. For any two adjacent cells, obviously the

A Computer Program Automatically Acquiring Some Skills for a Simple Design Problem

shared edge is not external, while all non-shared edges are. The shape
and the space of the cell complex together constitute a room design. The
problem is to find a room shape that will minimize the perimeter of the
room.

Figure 1. Cells occupying squares of a grid to form different valid cell complex
configurations, each with a different external shape and perimeter and of area =
9 units.

2. The Design Process

The process of designing and learning was implemented using an
integrated architecture for general intelligence called SOAR [1] (Laird,
et.al., 1987; Newell, 1990) that is supposed to be an embodiment of a
psychological theory of cognition (Newell, 1990). SOAR uses the classical
symbolic state-operator abstraction of problem solving with an underlying
production system [2] representation of knowledge as two of its
fundamental architectural elements. However there are some
differences[3] between a traditional production system and SOAR’s
production system. In the state-operator paradigm, operators transform
information in a state to generate other states until a goal state is reached
and identified.

The first design generation operator creates an initial design by choosing a
location near the center of the grid and allocating a grid square to
construct a cell of the room. Subsequent instances of another design
operator propose to construct the next cell in an unallocated grid square
adjacent (either to the north, south, east or west) to the most recently
constructed cell (the current cell). An operator is defined in SOAR as a
collection of rules, with at least one rule proposing the operator (like the
above) and at least another applying a selected operator.

The definition of the non-initial operator proposal is roughly as follows: “IF
there is a vacant grid square <v> in direction <d> adjacent to the current
cell <c> propose an operator <O> that would construct a new cell <c1>
with the grid square <v> in direction <d>” where <X>, denotes a
variable X which can pattern match [4] working memory. The application
rule for the same operator is as follows: If there is a selected operator
<O> with attributes grid square <v> in direction <d> THEN construct a
cell <c1> that occupies grid square <v> in direction <d> and make it the
current cell <c>. Before learning, there is no strategy knowledge to

Gourabmoy Nath

choose between proposed operators; thus all proposed operators are
applied in order to explore design alternatives.

Figure 2. Some cell configurations of area = 9 units generated by different move-
sequences from a given initial cell.

At each incremental building stage of the cell complex, one, two or three
operators are proposed depending on the number of unallocated adjacent
grid squares available. The second cell is proposed in 4 different ways,
i.e. in all the cardinal directions. In this way, a cell complex is
incrementally constructed. The process of designing is thus one of
incremental constructive generation. The design generation stops when
the total number of cells in the cell complex equals the area of the room.
Then design evaluation is done to assess the quality of the design.

Figure 3. (A) The cases of perimeter contribution rules of a cell under
consideration with 4,3,2,1 adjacent cells with bold edges highlighting the edges
contributing to perimeter (B) Application of the above rules, in cell complexes of
different shapes, the number in each cell denotes its contribution to the global
perimeter indicated by P= a number

A Computer Program Automatically Acquiring Some Skills for a Simple Design Problem

The design evaluation criterion here is perimeter of the global shape
generated. Global perimeter is calculated by using 4 simple rules: (a) If
exactly 3 adjacent grid squares of a cell are occupied then the contribution
of the cell to the global perimeter is 1 (b) If exactly 2 adjacent grid
squares of a cell are occupied then the contribution of the cell to the
global perimeter is 2 (c) If exactly 1 adjacent grid square of a cell is
occupied then the contribution of the cell to the global perimeter is 3 (d) If
all 4 adjacent grid squares of a cell are occupied then the contribution of
the cell to the global perimeter is 0. The global perimeter is the sum of
perimeter contributions from all the cells.

3. Learning from the experience of designing

The design process described above is tightly coupled with a simple
domain-independent analytical learning algorithm called chunking [5]
(Laird et.al., 1986; 1987) that is an architectural element of SOAR. The
coupling is tight in the sense that learning can take place while problem-
solving and what is learned becomes immediately available to the
problem-solver that could be applied as seamlessly as it would apply
human-encoded knowledge. For chunking to operate, the problem solver
maintains a trace of what data got transformed by the design operators to
result in what other data in the next state. This essentially captures the
exact experience of problem solving.

In this problem, chunking is applied recursively on solution paths that led
to optimal designs, when a problem of area= 4 was attempted first. The
way chunking is applied and operates in the context of designing and
particularly in this problem is described below. When generation stops
and a design is found that has the least perimeter (satisfies the design
evaluation metric), all intermediate design generations that led to this
design are assigned positive credit, which implies that in similar situations
in the future, following such solution paths or in other words, each
decision in the solution path is desirable. To identify a similar situation, or
the left hand side of the strategy rule, the chunking algorithm in a design
context translates into the following: first find the features, F that were
used to evaluate the evaluation metric. Then using the trace of design
generation maintained by the problem solver, backtrace the features F in
the parent state, that were used to generate the features that were used
to evaluate the evaluation metric. F is called the preimage of the design
evaluation metric. Then backtrace preimage F to its parent features.
Continue backtracing recursively in this manner, until the state just after
the initial state is reached. The set of backtraced features at each state
along the solution path represents the exact condition under which the
next design operator has proved to be profitable, because this solution
path finally led to a solution with least perimeter. Each such exact
condition is generalized using SOAR’s implicit generalization strategy
(Laird, et.al., 1986) [6] used in chunking viz.: (a) In the set of backtraced
elements at a given level, in the search tree, replace the same working
memory element by the same variable (b) Replace a different working
memory element by a different variable. For each such “generalized

Gourabmoy Nath

condition-following operator” pair a rule is constructed, that associates the
derived general condition to a preference on that operator over any other
operator. We thus have a selection heuristic for each decision along the
successful solution path.

This selection heuristic (chunk) learned through the analysis of experience
acts as strategy knowledge in a future scenario, where there is a similar
situation. “Similar” is defined as a pattern match of working memory with
the left-hand-side of the learned strategy rule. It is a recognition pattern
for the strategy knowledge to be applied. Note that, before learning there
was no strategy knowledge, which the problem solver could utilize to
select an operator amongst “north, south, east or west”. The process of
learning creates such strategy knowledge and if applied, could aid the
problem solver to choose the right operator (between the available ones:
north, south, east, west) at each design construction step. Before
learning, the design process is one of generation and evaluation. If a
similar situation is recognized, chunks apply to prefer an operator that has
previously yielded success. The situation is used to predict the resulting
action.

4. Skill acquisition experiment and results

The problem-solver armed with the above design process and chunking
algorithm (applied recursively) tries to make a first attempt on the above
mentioned design problem, where the requirements are to find minimal
perimeter shapes of area 4 units. The optimal shape here is obviously the
square. Some useful strategy rules are learned from this attempt. This
short and simple problem solving session seems to be enough for the
problem solver to gather knowledge to produce a solutions that is
guaranteed to include the optimal solution to a problem where area is N.
An experiment is conducted with N=9, it produces a solution set that
includes the optimal solution.

Figure 4. Design solution paths for area=4. Solutions emerging from some
intermediate solutions, before the last level are not shown.

A Computer Program Automatically Acquiring Some Skills for a Simple Design Problem

Figure 4 shows the different solution paths for the problem where area =
4 units. The best solutions are indicated with a symbol in the figure and
their solution paths are annotated using closed curves in bold. The
learned rules in the syntax of the programming language were examined
by the program designer and are depicted graphically in Figure 5 for easy
comprehension of their contents. In essence, there are two kinds of
learned rules. The first rule prefers any operator that proposes a grid
square such that on creation of the cell in the grid square, a global L-
shape is formed; the second prefers an operator that proposes an
operator that would close an existing L-shape cell configuration to form a
global square shaped cell configuration. The learned rules are saved for
future use.

Figure 5. Graphic depiction of the two types of learned rules

The next stage of the experiment was to examine whether the knowledge
gained from experience was useful for a 9-celled problem. It is obvious
that the optimal solution is a square of edge dimension 3 and perimeter
12. The program only produced configurations that completely
(perimeter=12) or nearly satisfied requirements (perimeter = 14) as
shown in Figure 6. Figure 7, shows a generative trace tree of the
solutions produced using the learned action selection heuristic knowledge
automatically derived using the previous problem. The figure also shows
pattern matches of “similar situation” of the chunks that resulted in the
selection heuristics being applied.

Gourabmoy Nath

Figure 6. Some solutions produced by using learned strategy rules for area= 9
units

Figure 7. Strategy knowledge influencing design generation

5. Evaluating the bounds of potential success of the learned
knowledge

Because the entire approach to designing this program has been symbolic,
the learned rules are human examinable and the bounds within which
these rules will be successful can be examined. This is quite unlike many
sub symbolic methods of learning where the knowledge learned remains
enmeshed within tuned weights and where such bounds could only
possibly be derived through experimentation.

A Computer Program Automatically Acquiring Some Skills for a Simple Design Problem

If the human is given this problem, a common approach [7] to solve it is
often using fundamental geometric knowledge acquired in school. The
square is a rectilinear shape that has the least perimeter for a given area.
Thus anything close to a square will be the optimal solution. If the human
starts working with the moves as the computer program does, he will
soon discover that a spiral move sequence will achieve a square. The two
strategy rules learned by the program subsume this common human
strategy and are thus guaranteed to produce an optimal solution (see
derivation of solution number 3 and 8 from the left hand side in the last
level of the generative trace tree in Figure 7). This is indeed quite
surprising. What is also surprising is that these two rules, also subsume,
other strategies for producing the square (see solution number 6 and 11
from the left hand side in the last level of the generative trace tree in
Figure 7).

But the L-shape creating strategy can produce the L in a direction
contrary to that of the spiral move sequence, as can be seen in the two
solutions of 6 and 7 cells on the extreme left-hand side of the 5th and 6th

level of the tree in Figure 7. This is advantageous in producing sub
optimal solutions if one is interested in them or even non-square shaped
optimal solutions where the required area is low (e.g. 9 or 10). But as the
area tends to be high, these two strategies, if not applied in the correct
sequence tend to produce long elongated shapes and is not very
advantageous as long as optimal/sub optimal perimeter of the shapes is a
requirement. In such a case, the optimum perimeter is far lower than
that of an elongated shape (consider area=100, optimum = 10 cell x10
cell square for which perimeter=40, a 2 cell x 50 cell rectangular
configuration will make the perimeter 104). Finally, it may be noted that
had the L-shape creating chunk been such that the L-shape could have
been formed only in one way, viz. in the direction appropriate to
maintaining the spiral move sequence, it would have matched exactly the
common human strategy. But the way the pattern has been learned
makes the L-shape creating strategy applicable in 2 ways resulting in 2
solutions. This surprises us, because its application (a) creates the square
in another way (see solution number 6 and 11 from the left hand side in
the last level of the generative trace tree in Figure 7) at a different
location in the grid (b) creates sub optimal solutions for low values of
area. On the other hand, for higher values of area, these sub optimal
solutions of elongated form are not so good solutions.
The human could also immediately draw a square if the area is a perfect
square. If the area is not a perfect square, it is quite common for the
human to apply the spiral move heuristic. Thus for N= 10, the human
produces a 9 celled square and adds the 10th cell adjacent to any
boundary cell. It is common, although is not always the case, for the
human to miss another optimal solution (a 2 cell X 5 cell rectangle) which
the learned strategy heuristics can produce, but applying the L shape
creating rule in a direction contrary to the spiral move sequence. This
effect of the learned strategy rules is also quite surprising. To achieve

Gourabmoy Nath

this skill level, more practice is needed by the program that would result
in the creation of more chunks, just as the human will need to experience
this phenomenon by working out a few more problem instances.

This work demonstrated the automatic acquisition of some human-like
strategies for generating solutions to a simple design problem. In
general, this approach may not work for demonstrating machine expertise
acquisition for any general design optimization problem. When we
analyse why this approach works in this problem, we find that the
problem has some interesting properties, which was the reason behind the
success of this method. This property was that good or optimal solutions
could be produced by a repetitive sequence of the same design operators.
In this case, sequential application of the L-shaped and square forming
heuristic will lead to a spiraling move sequence. The experimentation
with the 4-celled problem, helped in learning a generalization of that
sequence; it is a generalization because once the square is formed, the
learned strategy rule can form the L-shape in 2 ways. The application of
learned knowledge for the 9-celled problem simply applied that sequence.
The Tower of Hanoi problem is one such problem, though not in a design
domain, which can be solved through cyclic sequences of operator
application. There is evidence that people can also acquire such kind of
knowledge (Anzai and Simon, 1979). Shell and Carbonell(1989) used
machine learning algorithms to acquire similar knowledge (macro-
operators) in a computational system.

6. Dissecting the essence of the skill through some theory

Despite the problem domain being small and simple, the experiment was
instrumental in demonstrating automatic acquisition of human like skill in
the domain. What has changed as a result of experience in the computer
program? It is simply the addition and use of strategy knowledge that
augments the existing knowledge by dictating which rule to apply in what
situation. This is exactly what amount to “practical experiential
knowledge” or “know-how”(procedural knowledge), as opposed to the
earlier representation of the same knowledge as “know-that”(declarative
knowledge) (Anderson, 1983; Akin, 1990). The essence of practicality in
this knowledge is the goal-orientedness, which is captured in the left hand
side of the rule viz. the situation that causes the pattern match of the
strategy rule. The process of generation and evaluation is replaced by a
process of knowledge-based prediction or foresight of a good decision at
each step along a solution path, that enables problem solving to progress
through implicit evaluation.

We also notice that the theoretical concept of a “good design” has
changed representation. Before learning, it was simply a design that
would minimize perimeter. After learning, the representation of the
concept of a best design is changed to “what to do in order to get to the
best” that also include conditions of the actual environment in which the
theoretical concept of the best design was used. When Eastman (2001)
posits that learning and mastering new design representations are central

A Computer Program Automatically Acquiring Some Skills for a Simple Design Problem

to developing design expertise, he probably refers to the genesis of such
new representations. Bringing a medicinal analogy into picture, the
theoretical concept of an antibiotic as probably that of a “drug that is used
to cure bacterial infections”. A more pragmatic, goal-oriented, know-how
oriented concept representation of the antibiotic could be as follows: “ a
drug that is prescribed thrice a day for 10 days when a patient’s blood
report shows a significantly increased count of white blood cells, and the
patient has a history of increased body temperatures > 39 degree
centigrade in the last three days and the patient does not have a prior
history of gastro-intestinal problems”. Akin(1996) elucidates procedural
know-how through an example in design; To use his example in this
context, designers do not use the fundamental theoretical principles of
geometry and geography to design an overhang for a glazed opening at a
given altitude, azimuth and latitude, instead the designer has probably in
his semantic memory chunks that somehow encode the subtasks of
finding out extreme angles of solar incidence on a surface in order to
determine the extent of horizontal projection of the overhang.

It is also seen, that in this approach, the concept of an optimal design
becomes distributed (in terms of procedural knowledge) across the
condition of each of the learned strategy rules, at each design
construction step. Because there is no relation between the rules, or no
concept of a learned strategy rule applying over a sequence of design
decisions, it is natural to hypothesize that the rules could be over general.
Over generality is in fact observed, when the strategy rules could in fact
lead the design generation, say for a problem of area 100 to produce a
elongated shape that is not even sub optimal.

The chunking algorithm, the foundation of learning in SOAR, is founded
on the principles Chase and Simon’s chunking theory(1973), which
proposed that chess players, as well as other experts, acquire a large
number of chunks (familiar units denoting perceptual patterns) through
practice and study. Chunks are defined as groups of parts of some
complex stimulus that are related to each other using some intricate web
of relationships. In the case of chess, chunks provide valuable
information such as plausible moves, potential plans, or evaluations of
chess board positions. This theory has been used to explain the
performance of chess masters, who seem to recall a briefly presented
position almost perfectly. As per this theory, this phenomenon is possible
because these experts can recognise more and larger chunks than weaker
players, and they can find better moves because chunks give rapid access
to key information that may be elaborated by further look-ahead search.
Chase and Simon’s theory has been, considerably validated by a wealth of
protocol studies in other domains of expertise, including studies in the
domain of architectural design by Akin(1986,1990a,b).

We have shown in the context of this small problem, how learning from
computational experience changes/augments reasoning methods, concept
representations so that problem-solving becomes more goal-oriented.

Gourabmoy Nath

Before concluding, we reiterate two important facts (a) that the claims of
similarities between the processes of human and machine skill acquisition
is only to the degree(Newell, 1990) that a computational model of human
cognition like SOAR permits, in spite of the fact that if we view skill
acquisition in terms of input and output there is marked similarity (b) the
acquisition of strategic knowledge of the type demonstrated in our
experiment is probably one very important component of design skill or
know-how, but there are other important incrementally acquired know-
hows. Akin(1996) used in designing for problem re/formulation(Archea,
1986), problem decomposition, solution reassemblage which are not
addressed in this work.

7. Utility of the experiment

The author believes that this work is a simple worked out example that is
relevant for understanding the principal component of design expertise:
learning reusable strategy heuristics from problem situations, so that next
time under a similar situation a good design solution could be proposed
quickly without having to go through an elaborate search process,
sometimes even by mere inspection utilizing the acquired heuristic
predictors. This is the most critical behaviour that distinguishes a novice
from an expert. In other words understanding how designers transform a
piece of bookish theoretical knowledge into practical knowledge for fast
solution generation. The understanding in this case is of course with
respect to the much broader general theory of human cognition proposed
by Alan Newell (1990) and its architectural equivalent SOAR. The example
microcosm serves to demonstrate as to what design experience actually
is, how knowledge representation gets gradually changed with practice in
a given design domain to influence the design process and why and how
the learned knowledge is useful in producing better designs. The reader
may refer to the superset of this work (Nath, 2000) for details of the
learning algorithm or its application to a more involved real architectural
design problem. Similar experiments with other cognitive architectures [8]
can be conducted to gain an understanding of the design cognition
mechanisms that work in the background to result in what is seen as
expert behaviour. To emphasize again, this understanding, is with respect
to the theory of cognition on which the chosen architecture is founded
upon. Such an understanding is always beneficial, especially, when the
objective is to support designers with advanced computational tools
supporting one or more dimensions of design activity.

The reported experiment in this paper, for example, is relevant to
supporting designers with computational tools that accumulate and
subsequently reuse problem solving experience in the background, while
solving problems in the foreground; the behaviour of the problem solver
typically evolves with experience. Following is a description of how the
author sees this mechanism could be translated into part of an effective
design tool or a useful feature of an existing design tool. Design problem
solvers often have rule-based means of incrementally generating or
constructing a structure of the artifact through a sequence of

A Computer Program Automatically Acquiring Some Skills for a Simple Design Problem

transformations and criteria for evaluating which of the generated
structures are suitable. If a trace of this generative and evaluative process
is maintained, as soon as the evaluation leads to a good/bad design, the
chunking algorithm of SOAR, or in fact another explanation-based learning
method [9] can work in the background to derive useful goal-oriented
designing strategies for the future. These strategies can be ones, which
would direct future search to produce certain desirable features resulting
in good designs, or they can be strategies that do not produce some
undesirable features or bad designs. The theorectical concepts of ‘good’
and ‘bad ‘ are of course user definable, what to do in order to produce the
good and/or avoid the bad is found out by learning algorithm. The
learning and the impact of such strategies on design solutions have been
explored in detail by Nath (2000). The learned heuristics would be used
when the designer attempts to solve the same or similar design problem
with parameter changes, while maintaining the same representation of the
artifact to be designed as also the associated computational design
process. One of two things then happen when solving a similar problem
the ‘next time’ with the learned heuristics enabled: (a) If previously
learned knowledge match, it would be applied to bypass ‘known’ problem
solving situations to either explicitly propose a path that leads to a good
design (b) If there is no match then new knowledge will be learned to
augment the knowledge base of the problem solver so that a previously
unknown situation would henceforth be ‘known’.

Both cases of positive and negative heuristic acquisition by the proposed
tool will save considerable time for the designer, who would be using that
tool in terms of quickly arriving at good designs or even designs that
satisfy the designer’s preferences and not repeating ‘mistakes’. The tool
could also support visualizing these machine-acquired pattern-matching
strategies, editing and saving them, so that a subset of the learned
strategies could be loaded and used at the next program run, as per the
choice of the designer, leading to different classes of design solutions.
Novice designers could also understand the nature of a complex design
space, with the aid of such a tool. With these aspects of design activity
taken care of, the focus of the designer shifts much more towards
formulation and exploration with different search spaces for the design
problem and experimenting with each one with the proposed tool.

8. Conclusion

This paper reported an experiment on the automatic acquisition of a kind
of procedural know-how by a computer program while solving a small
well-defined demonstrative design problem and then applying the learned
know-how to produce good results for a slightly different design problem.
The program was founded upon primitive problem solving and learning
methods encapsulated in the SOAR architecture for general intelligence.
What is interesting is that (a) the knowledge learned in the context of this
problem surprisingly subsumes a common human problem solving
strategy (b) the part of the learned strategy that does not match the
common human strategy sometimes produces surprising results (c) the

Gourabmoy Nath

declarative concept representation of a good design is changed and
distributed across strategy rules as procedural know-how. Because of the
availability of know-how, the design reasoning method undergoes a
change, from search-based it becomes knowledge-based, from uniformed
to informed, from generative-evaluative to predictive, similar to what is
postulated in the theories of skill acquisition in cognitive science. The
work is useful for understanding the nature of design expertise and can be
used as a feature in computational tools for supporting designers.

Acknowledgements

This work was supported by an AUSAID fellowship and was carried out in
majority at the Key Centre of Design Computing and Cognition, Sydney,
Australia as a part of the author’s PhD research.

Notes

[1] SOAR: SOAR is a computational model of human cognition. It provides
an architectural framework to model problem solving and learning. SOAR
uses production rules to represent permanent knowledge, object-
attribute-value representation of temporary knowledge, problem space
representation of tasks and subtasks to be solved, automatic subgoaling
as the single method for generating goals and chunking as the single
learning mechanism.

[2] Production System: A production system consists of an unordered
collection of production rules (Forgy, 1982). The data operated on by the
productions is held a global database called working memory. All data in
working memory is defined using object-attribute-value triples. Each such
data is called a working memory element. Each production consists of
condition patterns on the left-hand-side and actions, which specify
addition or deletion of working memory elements on the right-hand-side.
Usually an interpreter executes a production system by performing the
following actions: (a) Match: Evaluate the left-hand sides of the
productions to determine which of them are satisfied, given the current
contents of working memory (b) Resolve Conflict: Select one production
to apply (c) Act: Perform actions on the right-hand-side of the production
chosen for application, after conflict resolution (d) Go to Match.

[3] SOAR-production system differences: In SOAR, a classical AI state-
operator abstraction is used on top of a production system. However
standard conflict resolution is replaced by the process of all productions
firing in parallel until there are none to fire. These rule firings propose
one of a small number of possible preferences on working memory
elements. A fixed decision process evaluates the preferences on these
working memory elements to arrive at the conclusion as to whether a new
working memory element is to be added or an existing working memory
element is to be deleted or the value of a working memory element is to
be modified (a combination of the above).

[4] Pattern Match: When some variables pattern match working memory,
other variables as a side-effect get bound to working memory data
producing a complete and consistent match, as is common in production

A Computer Program Automatically Acquiring Some Skills for a Simple Design Problem

system pattern-matching engines. When the left hand side of the rule
matches, the right hand side changes working memory accordingly.

[5] Chunking: The chunking algorithm in SOAR is a method of
summarizing an elaborate set of actions that were performed to achieve
some subgoal/task that is a part of the global goal. This summary is the
result that was achieved in the subgoal. A pattern is also learned, so that
this pattern could be used to recognize an opportunity to apply this
summarization result in the future. The motivation is that the process of
problem solving can then be bypassed in the future and simply be
replaced by the end result, resulting in efficiency. A chunk is rule
associating the two, the latter being the left hand side and the former, the
right hand side.

[6] Implicit Generalization: A generalization strategy that uses the data
abstractions used in reasoning as a basis for generalizing concepts.

[7] Common Human Approach: Unfortunately this phrase is a bit
subjective. We have no rigorous study of properly sampled human
subjects and their problem-solving strategies on this problem that could
conclusively establish that this is indeed a common approach.

[8] Cognitive Architecture: A cognitive architecture (Sloman, 2003) refers
to the design and organization of the mind. Theories of cognitive
architecture strive to provide an exhaustive survey of cognitive systems, a
description of the functions and capacities of each, and a blueprint to
integrate the systems. Such theories are designed around a small set of
principles of operation. Theories of cognitive architecture can be
contrasted with other kinds of cognitive theories in providing a set of
principles for constructing cognitive models, rather than a set of
hypotheses to be empirically tested.

[9] Explanation-based learning (EBL): The best way to understand
explanation-based learning is to follow the example. Given a training
example, C1 for learning, such that, C1 is light; is made of porcelain; has
a decoration, a concavity, a handle, and a flat bottom. Given, theoretical
background knowledge for the functional definition of a cup as follows: If
an object is stable and enables drinking, it is a cup. If an object has a
bottom which is flat, it is stable. If an object carries liquids and is liftable,
it enables drinking. If an object is light and has a handle, it is liftable. If
an object has a concavity, it carries liquids. Can it be proven that C1 is a
cup ? If the answer is yes, the proof tree is the explanation of why C1 is a
cup. From the explanation, EBL algorithm tries to find features, which if
present in any object will result in the conclusion that the object is indeed
a cup. The output of explanation-based learning applied to the above
example is a new rule: If an object is light, has a concavity, has a handle,
and has a flat bottom, it is a cup. Note that functional features are
converted into structural features which enable cup recognition.

Gourabmoy Nath

References

Akin, ö (1974) AIM: Architectural Inference Maker, in Proceedings of the
International conference and Exhibition on Computers in Engineering and Building
Design(CAD’74), London, pp 506-521.

Aki, ö (1986) A Formalism for Problem Restructuring and Resolution in Design,
Planning and Design, 13, pp 223-232.

Akin, ö (1990a) Necessary Conditions for Design Expertise and Creativity, Design
studies 11, pp 107-113.

Akin, ö (1990b) Expertise of the Architect, in Rychener, M.D., Expert Systems for
Engineering Design, Academic Press, NY, pp 173-196

Akin, ö and Akin, C. (1996). Expertise and Creativity in Architectural Design, in
Proceedings of the First International Symposium on Descriptive Models of
Design, Taskisla, Istanbul, Turkey.

Anderson, J (1983) The Architecture of Cognition. Cambridge, MA, Harvard
University Press.

Anzai, Y. (1987). Doing, Understanding and Learning in Problem Solving, in Klahr,
D., Langley, P. and Neches, R. (eds.) Production System Models of Learning and
Development, pp 55-97. MIT Press, MA.

Anzai, Y. and Simon, H. (1979). The Theory of Learning by Doing, Psychological
Review, 86, pp 124-140.

Archea, J. (1986) Puzzle-Making: What Architects do When Noone is Watching, in
Kalay, Y., Computability of Design, pp 37-52, Wiley Interscience, New York.

Chase, W.G. and Simon, H.A. (1973) Mind’s eye in Chess, in Visual Information
Processing, W.G.Chase (ed.), pp 215-282, Academic Press, New York.

Coyne (1988) Logic models of design, Pitman, London.

Eastman, C (1989) New Directions in Design Cognition: Studies of
Representations and Recall, in Design Knowing and Learning: Cognition in Design
Education, Eastman, C.M., McCracken, W.M. and W.C.Newstetter (eds), pp 147-
198, Elsevier.

Kolodner, J. (1983) Towards an Understanding of the Role of Experience in the
Evolution from Novice to Expert, International Journal of Man Machine Studies,
19, pp 497-518.

Laird, J., Newell, A. and Rosenbloom, P (1986) Chunking in SOAR: The Anatomy
of a General Learning Mechanism, Machine learning 1, pp. 11-46.

Laird, J., Newell, A and Rosenbloom, P (1987) SOAR: An Architecture for General
Intelligence, Artificial Intelligence 33, pp. 1-64.

Langley, P. (1987) A general theory of discrimination learning, in Production
System Models of Learning and Development, in Klahr, D., Langley, P. and
Neches, R. (eds.), pp 99-161, MIT Press, Cambridge, MA.

Muller, W. and Pasman, G. (1996) Typology and Organization of Design
knowledge, Design Studies, 17(2), pp 111-130.

Mitchell, W., Steadman, J. and Ligget, R. (1976), Synthesis and optimization of
small rectangular floor plans, Environment and Planning, B, 3(2), pp 37-70

A Computer Program Automatically Acquiring Some Skills for a Simple Design Problem

Nath, G. (2000) A model of situation learning in design, PhD Thesis, Department
of Architectural and Design Science, University of Sydney, Australia.

Newell, A. (1990) Unified theories of Cognition, Harvard University Press,
Cambridge, MA

Oki, A. and Lloyd Smith, D. (1991) Metaknowledge Reasoning in Civil Engineering
Expert Systems, Computers and Structures, 40(1), pp 7-10.

Shell, P. and Carbonell, J (1989). Towards a general framework of composing
disjunctive and iterative macro-operators, in Proceedings of the 11th Joint
Conference in Artificial Intelligence, Detroit, MI, pp 596-602.

S l o m a n , S . (2 0 0 3) , C o g n i t i v e A r c h i t e c t u r e ,
http://cognet.mit.edu/MITECS/Entry/sloman, MIT Encyclopaedia of Cognitive
Science(MITECS).

Smithers, T., Conkie, A., Doheny, J., Logan, B., Millington, K. and Tang, M.X.
(1990). Design as Intelligent Behaviour: an AI in design research programme,
Artificial Intelligence in Engineering 5(2), pp 78-108.

Vancza, J. (1991). Improving Design Knowledge by Learning, in Intelligent CAD-
III, Yoshikawa, H., Arbab, F. and Tomiyama, T (eds), Elsevier, pp 289-305.

